Friday 15 November 2013

Home Remedies for Food Poisoning .

Home Remedies for Food Poisoning  

http://www.youtube.com/watch?v=8Jn7-QONMNs

Most of us have suffered through food poisoning at one time or another. Food poisoning is caused by bacteria or other toxins in food. Some of the symptoms are nausea, vomiting, headache, dizziness, abdominal cramps and diarrhea. Food poisoning should not be ignored.
When you are suffering from food poisoning, your body will lose more water than normal. So try to stay well hydrated by drinking at least eight glasses of water throughout the day. The water will help flush out the toxins and bacteria causing your symptoms. Along with water, you can also drink diluted fruit juice and broth. You can also start treatment immediately with simple and readily available ingredients from your kitchen.
Here are the top 10 home remedies for food poisoning.
  1. Ginger

    Ginger is an excellent home remedy for curing almost all types of digestive problems related to food poisoning.
    • You can drink one cup of ginger tea after eating lunch or dinner to stop heart burn, nausea and other symptoms associated with food poisoning. To make ginger tea, boil one teaspoon grated ginger in a cup of water for a few minutes, add sugar and your tea is ready
    • Add a few drops of ginger juice to one teaspoon of honey and swallow it several times a day to reduce inflammation and pain.
    • Eating raw ginger increases the acid level in your stomach, which will help you digest your food more quickly.
  2. Apple Cider Vinegar

    Due to its alkaline nature, apple cider vinegar can alleviate various food poisoning symptoms. Apple cider vinegar will soothe the gastro-intestinal lining and kill the bacteria, giving you instant relief.
    • Just mix two tablespoon of apple cider vinegar in a cup of hot water and drink it before eating any solid food to prevent acid indigestion.
    • Alternatively, you can drink two tablespoons of undiluted apple cider vinegar.
  3. Fenugreek Seeds and Yogurt

    Yogurt is another anti-bacterial agent that can counter attack the bacteria that cause food poisoning. You can take one teaspoon fenugreek seeds along with a tablespoon of yogurt. You just need to swallow the seeds and need not chew them. The combining effect of fenugreek seeds and yogurt will give you an immediate relief from stomach pain as well as vomiting.
  4. Lemon

    The anti-inflammatory, antiviral, and antibacterial properties in lemons can give you much relief. The acid in lemons helps kill bacteria that cause food poisoning.
    • Just add a pinch of sugar to one teaspoon of lemon juice and drink it two to three times a day.
    • You can also sip on warm water with lemon juice to clean out your system.
  5. Basil

    Basil is an excellent herb that can cure infections caused by food poisoning. You can get the benefits from basil in several ways.
    • Drink basil juice witha tablespoon of honey several times a day.
    • Put a few drops of basil oil in one liter of drinking water. Drink it slowly throughout the day to kill bacteria causing stomach pain and other problems.
    • Add basil leaves, some sea salt, and a pinch black pepper to three tablespoons of plain yogurt. Eat this three to four times a day until your symptoms are gone.
  6. Garlic

    Garlic is also very effective in fighting food poisoning due to its strong antiviral, antibacterial and antifungal properties. It relieves symptoms such as diarrhea and abdominal pain by destroying unhealthy microbes in the intestines.
    • Eat one fresh garlic clove, swallowing it with water. If you can tolerate the smell of garlic, you can also try garlic juice.
    • Alternatively, you can make a mixture of garlic oil and soybean oil and rub it on your stomach after eating.
  7. Banana

    Bananas are a rich source of potassium that greatly helps reduce the various effects of food poisoning. Because bananas are very soft,they are easy on the stomach. Eating just one banana will also help restore your energy level. You can simply eat a ripe banana or make a tasty and healthy banana shake and drink it two to three times a day.
  8. Cumin

    Cumin seeds can control stomach inflammation due to food poisoning.
    • Just crush one tablespoon of cumin seeds and swallow it, then drink a glass of water.
    • You can also make an herbal drink from cumin seeds, salt, and asafetida. Drink it two to three times a day. This will cleanse the system and relieve your symptoms.
  9. Herbal Tea

    Sipping on different types of herbal tea can help soothe your disturbed system and keep your body well hydrated. Peppermint tea has a soothing effect on your stomach and can relieve stomach cramps. Comfrey root and meadow sweet tea will treat your stomach infection. If you are experiencing nausea, try licorice tea or chamomile tea as these teas will reduce inflammation and calm your stomach.
  10. Honey

    Honey has both antifungal and antibacterial properties that can be effective for treating indigestion and other food poisoning symptoms. Honey as a natural remedy can be taken in its pure form or added to tea. A teaspoon of honey three times a day can do wonders to heal an upset stomach due to food poisoning and indigestion. It also controls the formation of excessive acid in the stomach.

These natural treatments are sure to alleviate the symptoms of food poisoning and help you get instant relief. However, if symptoms continue, consult a doctor immediately.

http://www.top10homeremedies.com/home-remedies/home-remedies-for-food-poisoning.html

The Evil Brain: What Lurks Inside a Killer’s Mind

The Evil Brain: What Lurks Inside a Killer’s Mind

As tragedies like Boston and Newtown mount, scientists and criminologists are trying harder than ever to understand the minds behind the crimes

Homicidal madmen don’t have much of a capacity for gratitude, but if they did, they’d offer a word of thanks to Charles Whitman. Whitman was the 25-year-old engineering student and former Marine who, in 1966, killed 17 people and wounded 32 in a mass shooting at the University of Texas, before being shot and killed himself by police. Earlier that day, he also murdered his wife and mother. Criminal investigators looking for a reason for the rampage got what seemed to be their answer quickly, in the form of a suicide note Whitman left at his home:

"I do not really understand myself these days. I am supposed to be an average reasonable and intelligent young man. However, lately (I cannot recall when it started) I have been a victim of many unusual and irrational thoughts … please pay off my debts [and] donate the rest anonymously to a mental-health foundation. Maybe research can prevent further tragedies of this type." Whitman
Whitman got his wish — after a fashion. With the approval of his family, an autopsy was conducted and investigators found both a tumor and a vascular malformation pressing against his amygdala, the small and primitive region of the brain that controls emotion. A state commission of inquiry concluded that the tumor might have contributed to the shootings, earning Whitman a tiny measure of posthumous redemption — and providing all killers since at least the fig-leaf defense that something similar might be wrong with them too.
For as long as evil has existed, people have wondered about its source, and you don’t have to be too much of a scientific reductionist to conclude that the first place to look is the brain. There’s not a thing you’ve ever done, thought or felt in your life that isn’t ultimately traceable to a particular webwork of nerve cells firing in a particular way, allowing the machine that is you to function as it does. So if the machine is busted — if the operating system in your head fires in crazy ways — are you fully responsible for the behavior that follows?

Even before Whitman made it into the medical texts, scientists were already familiar with the case of Phineas Gage, the 25-year-old railroad worker who, in 1848, was helping to blast a path for a new rail line in Vermont when an errant explosion drove an iron rod into the top of his head, through his left frontal lobe and out his cheekbone. Gage, incredibly, didn’t die and nor did he even exhibit much loss of function. But after the bar was removed, there was a sudden change in his personality. Always a peaceable man, he become volatile, combative and, after a lifetime of polite speaking, wildly profane. It was science’s first glimpse at the seemingly direct cause-and-effect connection between trauma to the brain and the very essence of personality. As our ability to image and repair the brain has improved, we’ve been able to detect far less obvious damage than a railroad spike through the skull — damage that nonetheless has every bit as great an effect.
In a celebrated 2003 case published in the Archives of Neurology, for example, a 40-year-old Virginia schoolteacher with no history of pedophilia developed a sudden interest in child pornography and began making sexual overtures to his stepdaughter. His wife reported his behavior, and he was arrested and assigned to a 12-step program for sex offenders. He flunked out of the course — he couldn’t stop propositioning staff members — and was sentenced to prison. Only a day before he was set to surrender, however, he appeared in a local emergency room with an explosive headache and a range of other neurological symptoms. Doctors scanned his brain and found a tumor the size of an egg in the right orbitofrontal cortex, the region that processes decisionmaking and other so-called executive functions. The tumor was removed and the compulsive sexuality vanished along with it. Less than a year later, the tumor returned — and so, almost in lockstep, did his urges.
“There’s no one spot in the brain for pedophilia,” says Stephen J. Morse, professor of both law and psychiatry at the University of Pennsylvania. “But damage to the orbitofrontal region is known to be associated with disinhibition. We know that various forms of brain damage can contribute to difficulties in being guided by reason.”

Other, more recent studies are finding roots of criminality in other parts of the brain. As Maia Szalavitz reported in April, a team of researchers led by Kent Kiehl, associate professor of psychology at the University of New Mexico, published a study in the Proceedings of the National Academy of Sciences in which the brains of 96 male felons sentenced to at least a year in jail for crimes including robbery, drug dealing and assault were scanned in a functional magnetic resonance imager (fMRI). While they were in the fMRI, the men performed a task that required them to hit a key on a computer when they saw the letter X on a screen, but refrain when they saw the letter K. Since the X appeared 84% of the time and since the two letters look awfully similar to begin with, it was easy to get into the habit of overclicking. The ability to avoid hitting the key too much calls for a measure of impulse control, a faculty processed in a region of the brain known as the anterior cingulate cortex (ACC). The inmates who did worse on the test turned out to have lower levels of activity in the ACC; the ones who performed better had higher levels. Kiehl tracked all of the inmates for four years after their release from prison and found that those with the sleepy ACCs were also more than four times likelier to be rearrested than the others. If you can’t control your impulse to click, the study suggested, you might have equal difficulty controlling the impulse to run afoul of the law.
“There are more papers coming out that show how MRIs predict who reoffends,” said Kiehl in a follow-up e-mail with TIME. “We are examining treatments that increase activity in the anterior cingulate. The goal is to see if we can help identify the best therapies to reduce recidivism.”

Koenigs, who has collaborated with Kiehl, has conducted other work with inmates linking both the amygdala and a region known as the ventromedial prefrontal cortex as possible accomplices in crime. The amygdala is the wild child of that pair, the brain’s seat of fear, suspicion, anger and more. Those are not always bad emotions, provided the ventromedial is able to do one of its assigned jobs, which is to keep the amygdala on a short leash. Working with the Wisconsin Department of Corrections, Koenigs was given access to two groups of volunteer prisoners at a medium-security facility: one diagnosed as psychopathic, one nonpsychopathic.
In the first of two tests, Koenigs scanned the men’s brains with a diffusion tensor imager, a type of MRI that detects how water molecules interact with tissue. In this case, he was trying to determine the soundness of the white matter — the fatty insulation — that protects the neural circuits connecting the ventromedial and the amygdala. In a second test, he used an fMRI to study more directly how clearly the two regions were communicating. In both cases, the brains of the psychopaths were in worse shape than those of the nonpsychopaths, with less robust white-matter insulation and the nerves beneath it doing a poorer job of transmitting signals.
“You can use the findings of this study as a proxy for the connectedness between these two structures,” Koenigs says. “The remorselessness and violence seen in psychopaths may be attributable to the regions not communicating effectively.”

Other studies make a similar case for the mechanistic roots of crime. Enzymes known as monoamine oxidases (MAO) are essential to keeping human behavior in check, breaking down neurotransmitters such as serotonin and dopamine and ensuring that the brain remains in chemical balance. Babies born with a defect in an MAO-related gene — known colloquially as the warrior gene — have been shown to be at nine times higher risk of exhibiting antisocial behavior later in life. Adrian Raine, professor of criminology at the University of Pennsylvania, has found that infants under 6 months old who have a brain structure known as a cavum septum pellucidum — a small gap in a forward region between the left and right hemispheres — are similarly likelier to develop behavioral disorders, and face a higher risk of arrest and conviction as adults as well.
All of this makes the case for a neurological role in many violent crimes hard to deny, but all of it raises a powerful question too: So what? For one thing, brain anomalies are only part of the criminal puzzle. A rotten MAO gene indeed may play a role in later-life criminality, but in most cases it’s only when children have also been exposed to abuse or some other kind of childhood trauma. A child with a stable background and bad genetics may handle his warrior impulses just fine. Koenigs may have found cross-talk problems between the ventromedial and the amygdalae of psychopaths, but he also acknowledges that he didn’t get a look at the men’s brains until they were, on average, 30 years old, and a lot could have gone on in that time. “They’ve had a lifetime of poor socialization, drugs, alcohol, they’ve had their bell rung,” he says. “You don’t know what causes what.”
Even the case of the pedophile schoolteacher, whose pathology switched cleanly off and cleanly on depending on the presence of his tumor, was less clear than it seems. “He touched his stepdaughter only when his wife was not around, and his wife and co-workers had not noticed any problems,” says Morse. “Clearly he had some control or some rational capacity. You can’t say that just because the tumor caused him to have pedophiliac desires, he wasn’t responsible.”
That’s the zone in which science and the law always collide — the causation question that can’t simply be brain-scanned or tissue-sampled or longitudinally tested away. People like Morse believe where once we attributed all crime to moral laxity or simple evil, we’ve now overcorrected, too often looking to excuse criminal behavior medically. “I call it the fundamental psycholegal error,” he says. “The belief that if you discover a cause you’ve mitigated or excused responsibility. If you have a bank robber who can show that he commits crimes only when he’s in a hypomanic state, that does not mean he deserves excuse or mitigation.”
Koenigs takes a more forgiving view: “I’ve been part of a Department of Justice project to help inform judges about how to assess culpability,” he says. “The legal system currently goes about it the wrong way, relying on whether criminals know right from wrong. Maybe they do, but the kinds of things that would then give most people pause just don’t register on some of them.”
Where the two camps do agree is on the need to keep society safe from the predations of people whose raging brains — no matter the cause — lead to so much death and suffering. Here legal theory yields a little more easily to hard science. Scanning every inmate’s ACC before making parole decisions will surely raise privacy issues, but if the science can be proven and perfected, isn’t there a strong case for trying it — especially if, as Kiehl suggests, it might lead to therapeutic and rehabilitative strategies? Babies taken from abusive parents might similarly be scanned as part of a routine medical check, just in case a telltale gap in the brain hemispheres could exacerbate the trauma they’ve already endured, making therapeutic intervention all the more important.
Evil is far too complex and far too woven into our natures for us to think that we can always adjudicate it fairly. But the better we can understand the brains that are home to such ugliness, the more effectively we can contain it, control it and punish it. Now and then, with the help of science, we may even be able to snuff it out altogether.


Read more: Evil Brains: Can Science Understand Them? | TIME.com http://science.time.com/2013/05/03/evil-brain/#ixzz2klwBQODw